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Abstract

The prevailing approach in face recognition is to spe-
cialize a deep network for general computer vision to the
face recognition task. ResNet being specialized for use as
the backbone in SoTA face recognition systems is a prime
example of this. One significant architectural deviation in
the ResNet backbone adapted for face recognition is the
linearization of the output spatial map from the last con-
volution layer to feed the linear layer, rather than utiliz-
ing Global Average Pooling (GAP). The utilization of GAP
treats all pixel values in the output spatial map as equally
significant and averages them naively, thereby compromis-
ing the performance of the face recognition model. How-
ever, linearization of the spatial map inflates the total pa-
rameters in the model by up to 58% (R34) in the lighter
version of the ResNet backbone that is typically used for
face recognition. Leveraging the prior knowledge that face
images during training and testing are pre-aligned, we in-
troduce a novel Gaussian Weighted Pooling (GWP) layer,
integrating a pre-computed Gaussian Attention Kernel with
the Average Pooling Layer that weighs the importance of the
pixel based on the spatial position. Our findings show that
utilizing GWP consistently outperforms GAP and achieves
results comparable to those of parameter-inflated baseline
models.

1. Introduction

ResNet [14] has proven to be a highly successful backbone
for various vision tasks, such as classification, detection,
and segmentation. Face recognition is one of the fields that
has benefited from ResNet’s effectiveness as a backbone for
network architectures. Beginning with FaceNet [28], which
employed deep inception networks for face recognition,
subsequent developments continued along a similar trajec-
tory. SphereFace [19], introduced thereafter, also utilized
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Figure 1. Overview of the proposed Gaussian Pooling Layer
(GWP) integrated into a ResNet-based deep face recognition net-
work. Current practice involves linearizing the output spatial
map from the last convolution layer, adding significant parame-
ters to the network. GWP offers an alternative approach by pre-
computing attention pooling, eliminating the need for spatial map
linearization, all while having accuracy comparable to parameter-
inflated models.

a deep network architecture. However, the seminal work
[10] leveraged a variant of the adapted ResNet architecture.
Following this breakthrough, recent advancements such as
Q-MagFace [33], MagFace [24], AdaFace [18], Uniform-
Face [11], CurricularFace [17], UniFace [42], and Regu-
larFace [39] have all adopted the same backbone initially
proposed by [10]. These methods have consistently demon-
strated state-of-the-art accuracies across standard academic
benchmarks such as LFW [16], CFP-FP [29], AGEDB-30
[25], CALFW [41], CPLFW [40], and the IJB family testing
suite [23, 34].

To train a face recognition network, the ResNet back-
bone is trained with the classification head attached. How-
ever, during inference time, the classification head is re-
moved to obtain 512-D feature vectors, which are used as
the representation of the image. This 512-D feature vector
representation of the image is later used for face verification
and identification protocols. This is different from general
classification, where the logits are transformed into proba-
bility scores using the softmax function, and the index with
the highest probability output corresponds to the result class
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for a given image. In general vision networks, it’s typical
for the convolutional output to be passed through an Global
Average Pooling (GAP) layer, which serves to condense the
spatial map down to a 1 × 1 size. It’s worth noting that in
general vision tasks, typically only one linear layer is em-
ployed. This layer acts similarly to a basic linear layer in
a multi-layer perceptron (MLP), linking the flattened out-
put of the average pooling to the output layer, where each
nodes represent the classes. However, in face recognition
networks, there are two layers involved. The first one con-
nects the flattened feature map to a 512-D representation,
and the second one connects these representations to the
nodes representing the number of identities (class). Dur-
ing inference, the last linear layer is removed, and the in-
termediate 512-D representation is utilized as the image’s
representation. When referring to the total parameters in
the backbone, we exclude the last linear layer (classifica-
tion head) since its size is solely determined by the number
of identities in the training data, akin to the classes in gen-
eral vision tasks. Our focus lies solely on the backbone,
which produces a 512-D feature vector representation for
an image.

To ensure a reliable representation of an image in the
proxy 512-D vector, numerous modifications have been im-
plemented on the original ResNet architecture. These adap-
tations have been widely adopted by ResNet-based face
recognition approaches. Some of the major architectural
adaptations include:
1) Linearizing the output spatial map after the last con-
volution layer, as opposed to using Global Average Pool-
ing(GAP). The final convolution layer in the SoTA back-
bone configuration outputs a spatial map of size 7 × 7 .
With 512 feature maps, this flattening of this spatial map
adds approximately 13 million (512× 7× 7× 512) param-
eters to the backbone. This alone contributes to approx-
imately 54% of the total parameters in ResNet18, which
totals 24 million parameters, and about 20% of the total
parameters in ResNet100, which totals 65 million param-
eters. Conversely, using a Global Average Pooling (GAP)
layer would result to addition of only 0.26 million linear
(512×1×1×512) parameters, or roughly 0.4 - 1% of the to-
tal. Efforts to decrease linear parameters have been demon-
strated in the field of generative models [27], but such en-
deavors have been less prevalent in SoTA face recognition
networks.
2) Changing the kernel size from 7 × 7 and stride
2 followed by pooling to a kernel size of 3 × 3 and
stride 1 with no pooling. This adjustment preserves a
larger spatial map throughout the network. To maintain
larger spatial map to learn more distinct features appears
to be a logical decision. However, achieving the same
spatial output using a 3 × 3 kernel, stride 1, and padding
1 can also be attained using a 7 × 7 kernel, stride 1, and

padding 3, with negligible additional parameters. Using
a larger kernel in the first layer that interacts with raw
RGB image might allow it to potentially model features
more effectively as larger kernel extends the receptive field
of the network. One such example of convolution kernels
of size 3 and 7 overlaid over the face image is shown
in Figure 2. Another motivation for changing the kernel
size from 7 × 7 to 3 × 3 could stem from VGGNet [30],
which attained state-of-the-art results for various computer
vision tasks back then. Unlike another popular architecture,
Inception [31], which employs a mixture of kernel sizes,
VGGNet standardized the convolution kernel size to 3 × 3
throughout the network. Changing from 7 × 7 to 3 × 3
and vice-versa in the first layer has insignificant impact
to parameter count, regardless we present the results with
both kernel size setting.

(a) k = 3× 3 (b) k = 7× 7

Figure 2. A 7× 7 kernel and a 3× 3 kernel are randomly overlaid
on the face image. Using a 7 × 7 kernel directly on the raw RGB
image could better model patterns. Additionally, smaller 3×3 ker-
nels might also be susceptible to noise interacting with RAW pixel
values. However, employing a smaller kernel size in deeper lay-
ers is acceptable as it operates on abstract representations, where
noise is essentially filtered out by prior convolution kernels.

3) Modifications to the residual units and eliminating
bottleneck layers. Residual blocks facilitate effective
gradient flow, while bottleneck layers aim to reduce the
convolution parameters within the convolution blocks of
ResNet. These changes could have a substantial impact for
face recognition network. However, the impact of the al-
ternative residual block configuration has been thoroughly
studied in this work [10].

The family of lightweight and efficient face recog-
nition networks has garnered attention in recent years
[2, 5–8, 13, 21, 35, 36, 38]. This line of research aims to
propose various architectures with reduced computational
complexity. While other works focus on increasing accu-
racy numbers on benchmarks using deep neural networks
[10, 11, 17–19, 24, 33, 39, 42], our approach combines
aspects of both strategies. Rather than proposing an
entirely new lightweight network, we analyze one of the
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most widely used backbones and identify how a specific
layer has been suboptimally integrated and overutilized.
The key contributions of our work include:

C1) We introduce a novel Gaussian Weighted Pooling
(GWP) layer that addresses the inherent flaw in global
average pooling, which discards the spatial information and
treats each pixel equally. Furthermore, it achieves accuracy
comparable to the original backbone that linearizes the
output spatial map, all while significantly reducing the
number of parameters .

C2) We have demonstrated the effectiveness of our ap-
proach across both static and adaptive margin learning
paradigms, as well as across varying depths of face recogni-
tion backbones, using standard benchmark datasets and the
IJB test family.

2. Literature Review
Face recognition stands as a pivotal application within
computer vision. Researchers in this field typically
diverge into two primary avenues of exploration. One
faction focuses on refining metrics to effectively represent
facial features, remaining indifferent to the scale of the
underlying backbone. On the other hand, another faction
directs its efforts towards optimizing the architecture of the
underlying backbone, often prioritizing computational ef-
ficiency and scalability over intricate feature representation.

Improving benchmark accuracy. An early milestone in
utilizing deep learning for face recognition was achieved
by FaceNet [28], which employed an inception network
boasting approximately 140 million parameters to gen-
erate a 128-dimensional vector for image representation.
Subsequently, with the emergence of ResNet [14] , state-of-
the-art methodologies adapted versions of ResNet as their
backbone [10, 11, 17–19, 24, 33, 39, 42]. These approaches
are primarily geared towards maximizing accuracy on
benchmark datasets, often overlooking considerations
regarding parameter count in the network backbone used.
Note that, with the exception of [19], which predates [10],
all other advanced deep-learning-based face recognition
methods utilize the modified ResNet introduced by [10]. In
our study, we draw attention to the unnecessary parameter
inflation in the linear layer of the backbones employed by
these face recognition methods, which only yield marginal
accuracy improvements.

Efficient Face Recognition Networks. Researchers have
focused on designing and adapting lightweight face recog-
nition networks to tackle the memory and computational
complexities inherent in state-of-the-art deep neural net-
works. This approach aims to achieve higher benchmark ac-

curacies while mitigating the burdensome resource require-
ments. One such early approach adapts MobileNet archi-
tecture for face [8, 15]. They propose a global-depth wise
convolution to treat the final feature maps differently and
in doing so, they reduce the numbers of parameters. Sim-
ilarly, another work called, Efficient Lightweight Attention
Networks (ELANet), consists of inverted residual blocks,
which can alleviate the computational effort required by
fusing spatial and channel attention [38]. Another such
work called MixFaceNet [5] uses the concept of MixConv
and adapt it to face recognition networks. Mixed depth-
wise convolution (MixConv) naturally mixes up multiple
kernel sizes in a single convolution by splitting up the in-
put of convolution into groups and applying different ker-
nel sizes to each group [32]. ShiftFaceNet is built upon
the architectural foundation introduced in ShiftNet for face
recognition, leveraging the FLOP-free “shift” operation as
a substitute for spatial convolutions [35]. By integrating
shifts with point-wise convolutions, an end-to-end train-
able shift-based module is developed, which mitigates com-
putational complexity. MobiFace, on the other hand, ex-
plores quicker downsampling of feature maps and bottle-
neck residual blocks to formulate lightweight models [12].
Based on ShuffleNetV2 [20], another lightweight model
called ShuffleFaceNet replaces the Global Average Pool-
ing layer with a Global Depth-wise Convolution layer in
the original architecture to reduce the parameters [21]. A
new family of lightweight architectures tailored for facial
recognition, termed PocketNet, was developed using neural
architecture search (NAS) [6]. Recently, EdgeFace emerged
as a promising model, drawing inspiration from EdgeNext
and integrating the strengths of both CNN and Transformer
architectures, leading to remarkable performance in face
recognition tasks [13]. Other notable lightweight face
recognition models, such as GhostFaceNet [2], Proxyless-
FaceNAS [7], and VarGFaceNet [36], have also been de-
vised to balance computational complexity with high accu-
racy benchmarks.

3. Preliminaries and Proposed Method
As mentioned in Section 1, the mainstream approach in
ResNet-based face recognition networks involves lineariz-
ing the spatial map after the last convolutional layer before
passing it to the fully-connected layer. This linearization
significantly impacts the model parameters. This signif-
icant architectural deviation, introducing the linearization
of the spatial map, can be mainly attributed to an inherent
flaw in average pooling. Average pooling treats all pixels
equally, whereas in face recognition, center pixels are often
considered more important than corner pixels. This leads
to a suboptimal 512-D feature vector for image represen-
tation. To mitigate the limitations of average pooling and
take a step towards eliminating the need for linearizing the
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Figure 3. Linearizing the final output spatial map to obtain a high-quality intermediate 512-D vector, as commonly practiced in
standard face recognition methods, results in unneccessary parameters in the linear layer. The utilization of Gaussian Weighted
Pooling (GWP) offers a solution to bypass the linearization process while preserving network accuracy with significantly fewer
parameters. Branch A⃝, depicted in the figure, illustrates the prevailing standard approach in mainstream ResNet-based face recognition
networks. This configuration adds approximately 13 million parameters in the linear layer. Branch B⃝ introduces the incorporation of
the Gaussian Weighted Pooling (GWP) layer. This layer downsamples the 7 × 7 output spatial map to 1 × 1, which employs a pre-
computed Gaussian attention kernel to assign varying importance to pixels based on their position within the map, only adding 0.26 million
parameters in the linear layer.

spatial map, we propose a novel method termed Gaussian
Weighted Pooling (GWP) in this study.

Mathematically, gaussian weighted pooling can be for-
malized in these following steps. The first step is the feature
map normalization step, which can be represented as:

X̂c,h,w =
Xc,h,w − µc

σc
(1)

where, Xc,h,w is the learned spatial map, X̂c,h,w is the nor-
malized spatial map, µ is mean of the feature map, and σ
is the deviation in the feature map. We have used σ = 3
in our experiments. This sigma value does not excessively
smooth or overly sharpen the output spatial map, which has
dimensions of 7× 7.

Next, the normalized spatial map is passed through a
pre-computed Gaussian attention layer. The pre-computed
gaussian attention map can be represented as:

Gx,y = exp

(
− (x− xc)

2 + (y − yc)
2

2σ2

)
(2)

where, G denotes the Gaussian attention kernel with a ker-
nel size of k and standard deviation σ. Here, G represents
the unnormalized kernel. To maintain the energy of the
original signal, ensuring that this attention layer functions
as a filter without altering the overall energy of the signal
(learned spatial map), we normalize the kernel such that the
sum of its elements equals 1. This normalization is illus-

trated as follows:

Gattention =
G∑n

x=1

∑n
y=1 Gx,y

(3)

where, Gattention is the normalized Gaussian attention ker-
nel. Finally, the learned attention spatial map is obtained by
performing the Hadamard product between the normalized
learned spatial map and the Gaussian attention kernel. This
is represented as follows:

X̃c,h,w = X̂c,h,w ⊙Gattention (4)

where, X̃c,h,w is the weighted spatial map, X̂c,h,w is the
normalized spatial map and Gattention is the normalized
Gaussian attention kernel. This weighted spatial map is then
subject to Global Average Pooling.

The Figure 3 illustrates the overview of Gaussian
Weighted Pooling (GWP). The weighted spatial map
(X̃c,h,w) ensures that center pixels are given greater impor-
tance, while corner pixels are assigned lower importance.
Therefore, performing average pooling on this weighted
spatial map is not merely a naı̈ve averaging of all pixels, as
each pixel’s positional importance is taken into account.

Numerical Stability during Training? This implementa-
tion ensures numerical stability during training primarily
due to two normalization steps: first, each learned fea-
ture map is normalized before the Hadamard product is
performed, and second, the Gaussian attention kernel is
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Loss Training Params Params. Linear (% total) LFW CFP-FP AGEDB-30 CALFW CPFLW Average

Baseline with k = 3 43.6 M 12.8 M (≈ 30%) 99.77 ± 0.03 99.03 ± 0.06 97.56 ± 0.14 95.98 ± 0.08 94.07 ± 0.10 97.28 ± 0.08

Baseline with k = 7 43.6 M 12.8 M (≈ 30%) 99.80 98.96 97.78 96.02 94.10 97.33

ArcFace GWP with k = 3 31 M 0.26 M (≈ 0.84%) 99.80 98.86 97.23 95.97 94.45 97.26

GWP with k = 7 31 M 0.26 M (≈ 0.84%) 99.78 98.73 97.50 95.82 94.67 97.30

Baseline with k = 3 43.6 M 12.8 M (≈ 30%) 99.79 ± 0.02 98.88 ± 0.07 97.64 ± 0.06 96.02 ± 0.10 94.01 ± 0.14 97.26 ± 0.05

Baseline with k = 7 43.6 M 12.8 M (≈ 30%) 99.80 98.87 97.78 96.00 94.28 97.35

AdaFace GWP with k = 3 31 M 0.26 M (≈ 0.84%) 99.78 98.69 96.98 95.85 94.55 97.18

GWP with k = 7 31 M 0.26 M (≈ 0.84%) 99.82 98.73 97.13 95.90 94.67 97.25

Table 1. Baseline (ResNet50) vs. Altered Backbones on Standard Benchmarks. Note that most accuracy values for networks with reduced
linear layers are all within two standard deviations of the baseline. Integration of a novel Gaussian Weighted Pooling (GWP) layer, which
rectifies the inherent flaws of treating each pixel equally in naı̈ve average pooling, results in a reduction of approximately 29% in the
number of parameters within the backbone, all while preserving accuracy. [ Keys: Gaussian Weighted Pooling (GWP), lower and within
2σ of baseline average, higher than or equal to baseline average ]

normalized to have a sum of 1. These two normalization
steps combined preserve overall energy or magnitude in
the resulting spatial map, preventing inconsistencies in the
representation of spatial features.

Why GWP is suitable for face recognition? One major
difference between face recognition and general object clas-
sification lies in the image pre-processing for training and
testing. In general object classification, training data is typ-
ically randomly cropped on-the-fly from larger images dur-
ing training. However, in face recognition, both training and
test images are first detected, then the face is cropped and
aligned to the center of the frame. This process provides
a substantial prior information about the positioning of the
face. Hence, pre-computed static attention filters, such as
those used for Gaussian Weighted Pooling (GWP), are suit-
able for the domain of face recognition.

4. Implementation Details
In our experiments, we use two kinds of margin loss func-
tions: one with a static margin value - ArcFace, and the
other with an adaptive margin value - AdaFace to ensure
that the findings are consistent for both learning paradigms.
We use ResNet50 [14] with modifications as proposed in
[10] as baseline backbone. For the backbone with GWP, the
flattening of the final output from convolution layer is re-
placed with a GWP layer. For ArcFace, we use combined
margin values of (1, 0, 0.4). We use cleaned WebFace4M
dataset [4, 43] as the training set. Images in WebFace4M
dataset are pre-aligned using RetinaFace [9]. The model is
trained for 20 epochs using SGD as the optimizer [26], with
momentum of 0.9, an initial learning rate of 0.1 and weight
decay of 5e-4. We adopt polynomial decay as the learning
rate scheduler during training from [1]. For AdaFace, we
follow the original paper and use initial margin of 0.4. The
model is trained for 26 epochs using SGD as the optimizer,
with momentum of 0.9 and initial learning rate of 0.1. The

learning rate is reduced by a gamma factor of 0.1 at the 12th,
20th, and 24th epochs.

5. Results
We compare the results for two versions of the backbone:
Baseline and Gaussian Weighted Pooling (GWP). We
perform the evaluation of baseline model five times to cal-
culate the average performance and its standard deviation.
This allows us to determine statistical significance for com-
parisons. These networks are presented using a kernel size
of 3×3 and 7×7 in the first layer, as discussed in Section 3.

Results on Standard Benchmarks. The results for
standard benchmarks are in Table 1. First, as hypothesized,
it is not very clear whether employing a kernel size of
7 × 7 in the first convolution layer is better than 3 × 3
for the baseline model. Nonetheless, the results for both
kernel settings are consistently on par with each other. This
consistency holds across standard benchmark accuracy
and two different loss functions. Second, using Gaussian
Weighted Pooling (GWP) reduces the total parameters by
29% for the given configuration of the network (R50). This
equivalently means that the number of linear parameters is
reduced by 98% (from 13M to 0.26M). For both kernel size
of 3× 3 and 7× 7 with GWP, the average accuracy on stan-
dard benchmarks is comparable to the baseline accuracy.
However, with GWP, the average accuracy consistently
surpasses that of a 3 × 3 kernel size when employing a
7× 7 kernel size. This indicates that employing GWP with
a 7 × 7 kernel can effectively match the performance of a
parameter-inflated baseline backbone featuring linearized
spatial mapping but with a notable reduction in parameters.
This observation remains consistent across both training
paradigms: adaptive margin and static margin methods.

Results on IJB Suite. The results for IJB testing are in
Table 2. The results closely resemble to what was observed
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IJB-B IJB-C

Loss FAR Threshold → 1e−5 1e−4 1e−3 1e−2 1e−1 1e−5 1e−4 1e−3 1e−2 1e−1

Baseline with k = 3 91.54 ± 0.21 95.16 ± 0.09 96.80 ± 0.06 97.83 ± 0.10 98.80±0.02 95.05±0.06 96.88±0.08 97.99±0.04 98.63±0.02 99.28±0.02

Baseline with k = 7 91.67 95.35 96.74 97.79 98.88 94.97 96.93 97.93 98.63 99.28

ArcFace GWP with k = 3 90.77 94.70 96.41 97.94 98.93 94.44 96.47 97.65 98.61 99.30

GWP with k = 7 90.32 94.85 96.51 97.83 98.98 94.31 96.50 97.72 98.59 99.28

Baseline with k = 3 91.58 ± 0.15 95.41 ± 0.12 97.11 ± 0.02 98.15 ± 0.02 99.03 ± 0.03 95.05 ± 0.04 96.89 ± 0.09 98.08 ± 0.02 98.81 ± 0.06 99.36 ± 0.02

Baseline with k = 7 91.93 95.38 97.14 98.22 99.05 95.08 96.91 98.09 98.81 99.39

AdaFace GWP with k = 3 90.50 94.45 96.77 98.18 99.07 94.07 96.28 97.77 98.73 99.39

GWP with k = 7 90.63 94.72 96.83 98.19 99.06 93.84 96.31 97.80 98.68 99.35

Table 2. Baseline (ResNet50) vs. Altered Backbones on IJB testing suite. The results align fairly consistently with those obtained from
standard benchmark evaluation datasets. Incorporation of a novel Gaussian Weighted Pooling layer, which reduces 29% of the total
parameters in the network, shows only marginal effects on accuracy. [ Keys: Naı̈ve Intermediate Downsample (NID), Gaussian Weighted
Pooling(GWP), lower and within 2σ of baseline average, higher than or equal to baseline average ]

for standard benchmarks for baseline models. Employing a
kernel size of 3×3 and 7×7 in the first layer is consistently
on par for varying TAR@FAR thresholds. For both kernel
settings, the accuracy on IJB is on par with or better than the
baseline accuracy at less strict thresholding (0.01 or higher).
At stricter thresholds, such as lower than 0.01, the accuracy
is lower than the baseline. However, this reduced accuracy
can be partially mitigated by using a kernel size of 7× 7 in
the first convolution layer with GWP. With a kernel size of
7 × 7 with GWP, the accuracy on varying thresholds, from
strict to less strict, is higher than the accuracy with kernel
size of 3 × 3 with GWP and is comparable to the accuracy
of the baseline model with a kernel size of 3 × 3, which is
commonly used in face recognition networks today.

6. Ablation Study

Downsampling to 1× 1 without GWP.
To underscore the significance of Gaussian Weighted Pool-
ing (GWP), we undertake ablation in two distinct steps.
Initially, we replace GWP with GAP in a pre-trained model
by eliminating the pre-computed static kernel. This oper-
ation remains valid as GWP simply utilizes pre-computed
static attention kernels before average pooling, thus there
is no alteration in the learnable parameters of the network.
Subsequently, we train entire model using naı̈ve average
pooling layer (GAP) to downsample the output spatial map
from 7 × 7 to 1 × 1. The results of this experiment are
presented in Table 3. In a pre-trained model trained with
GWP, the pre-computed Gaussian kernel holds significant
importance. Without this pre-computed static kernel, there
is a drastic drop in performance during inference. Results
from models trained from scratch with GAP (w/o GWP)
also suggest that GWP boosts accuracy by selectively
attending to various regions of the output spatial map, pri-
oritizing the center over the corners. Notably, this increase
in accuracy is achieved without additional parameters; both
networks, whether with GWP or GAP, maintain the same

number of learnable parameters.

Loss Training Avg. IJB-B IJB-C

w GWP 97.30 94.85 96.50

ArcFace w/o GWP† 97.02 93.33 95.58

w GAP‡ 97.10 94.25 96.14

w GWP 97.25 94.72 96.31

AdaFace w/o GWP† 97.01 94.06 95.76

w GAP‡ 97.11 94.11 95.94

‡ training from scratch with GAP (w/o GWP).

† pre-trained model with GWP without attention kernel during inference.

Table 3. Comparison of model performance with and without
Gaussian Weighted Pooling (GWP) layer. GWP significantly im-
proves accuracy without adding parameters and with negligible
addition to computation cost. Replacing GWP with naı̈ve aver-
age pooling (GAP) in a pre-trained GWP model leads to a signif-
icant performance decline. Moreover, models trained using Naı̈ve
Average Pooling consistently from scratch also demonstrates infe-
rior performance when compared to those incorporating the GWP
layer. For standard benchmarks, 1:1 verification accuracy (%) and
TAR@FAR=1e−4 are reported respectively. [ Key: best ]

7. Comparative Analysis
7.1. Comparison with SoTA Edge Models.

We are not aware of any prior work that has investigated
in-depth the archictectural changes made to vanilla ResNet
to adapt it for face recognition. While the seminal work
by Deng et al. [10] explored various residual structures,
it didn’t analyze alternatives to linearizing the output
convolution spatial map. Therefore, we alter the network’s
structure to investigate the impact of linearizing the output
spatial map. This involves significantly reducing the
output spatial map through Gaussian Weighted Pooling
(GWP) before linearization. This reduction slashes the
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Model
Num. Params.

(M)
Size Train.

(M)
Benchmark Avg.

(%)
IJB-B
(%)

IJB-C
(%)

ProxylessFaceNAS [22] 5.1 93.01 87.10 89.70
MobileFaceNetV1 [22] 5.1 94.64 92.0 93.90

PocketNetS-256 [6] 5.1 94.75 89.31 91.33
ShuffleFaceNet 1.5x [21, 22] ≪43.6 5.1 95.49 92.30 94.30

PocketNetM-256 [6] 5.1 95.61 90.74 92.70
MobileFaceNet[22] 5.1 95.72 92.80 94.70

VarGFaceNet [22, 36] 5.1 96.04 92.90 94.70
EdgeFace [13] 5.1 96.15 92.67 94.85

ArcFace 43.6 3.9 97.28 ± 0.08 95.16 ± 0.09 96.88 ± 0.08
ArcFace w/ GWP (Ours) 31 3.9 97.30 94.85 96.50

ArcFace w/ GDC 31 3.9 97.32 95.09 96.79

AdaFace 43.6 3.9 97.26 ± 0.05 95.41 ± 0.12 96.89 ± 0.09
AdaFace w/ GWP (Ours) 31 3.9 97.25 94.72 96.31

AdaFace w/ GDC 31 3.9 96.63 93.55 95.43

Table 4. With GWP, the adoption of ResNet for facial recognition becomes more efficient. Our approach, integrating GWP, attains
accuracy comparable to that of the heavier model, yet significantly surpasses edge models in accuracy. Additionally, GWP exhibits greater
numerical stability and demonstrates consistent performance across both static and adaptive margin methods. For standard benchmarks,
1:1 verification accuracy (%) and TAR@FAR=1e−4 are reported respectively.

network’s parameters by approximately 12.5 million, and
our experiments have shown that the accuracy remains
on par with the baseline model. However, this reduction
doesn’t transform the network into an ultralight model;
rather, it crafts an efficient iteration of the deep ResNet
model for face. Lightweight models typically employ
efficient operations and blocks from the outset, balancing
computation complexity with accuracy. To demonstrate the
distinct yet efficient nature of our model, we compare its
accuracy with other lightweight models. Our aim isn’t to
assert superiority over all edge methods but to showcase
that our results belong to a distinct model category. The
table clearly demonstrates that our model, as proposed
in this study, surpasses all previous lightweight models.
Notably, it achieves this while showcasing approximately
29% fewer parameters compared to the adapted ResNet
version designed for face recognition, all while maintaining
a similar level of performance or having marginal impacts
on accuracy.

Comparison with alternative possible approach. In
addition to comparing with other edge models, we also
train the backbone by substituting Gaussian Weighted
Pooling (GWP) with Global Depth Wise Convolution
(GDC), which serves as an alternative approach to GWP
for reducing linear parameters. Depth-wise separable
convolution, initially proposed in MobileNet [15] and later
adapted in MobileFaceNet [8], extensively utilizes such
convolutions for efficiency. Particularly in MobileFaceNet,
the Global Depth Wise Convolution (GDC) layer handles
the spatial output from the last convolution layer, similar to
the GWP used in our study. However, a key distinction in

GDC when compared to GWP is that GDC use learnable
spatial kernel. As observed in Table 4, GDC demonstrates
comparable performance to the baseline in static margin
models such as ArcFace, but experiences catastrophic
failure in adaptive margin models such as AdaFace. These
findings underscore two key points: a) GWP exhibits
numerical stability and yields more consistent outcomes
across both adaptive and static margin learning paradigms,
and b) although GDC demonstrates instability in adaptive
margin models, its utilization in static margin models
can offer an additional illustration that linearization of
output spatial map might be unnecessary, underscoring
the importance of seeking alternative parameter-friendly
approaches.

7.2. GWP w/ Deeper and Lighter Backbone.

In this section, we extend our analysis regarding the effec-
tiveness of GWP to more lighter and deeper versions of the
SoTA backbone and the results are summarized in Table
5. For a smaller ResNet34 backbone, substituting the lin-
earization with GAP reduces the total number of parameters
in the model by about 37% (from 34M to 26M). As a result,
there is a reduction in accuracy for both loss functions used.
However, with GWP, a significant portion of the lost accu-
racy is regained. Our experiments shows that 100% of the
lost accuracy can be regained for standard benchmarks in
the case of AdaFace, along with 52% for IJBB and 50%
for IJBC. Similarly, for ArcFace, the accuracy is regained
by 100% for standard benchmarks, 22% for IJBB, and 32%
for IJBC. Likewise, for a larger ResNet100 backbone, re-
placing the linearization with Global Average Pooling also
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results in a substantial reduction in the total number of pa-
rameters in the model by approximately 20% (from 65M to
52M). This change results in a decrease in model accuracy,
although it’s not as significant as what we observed with the
smaller backbone. The larger backbone contains only 20%
of its total parameters within the linear layers (13M out of
65M), whereas in the case of the smaller backbone, the lin-
ear layers constitute approximately 40% of the total param-
eters (13M out of 52M). Thus, for the smaller backbone,
linear parameters play a pivotal role in learning, whereas
for the larger backbone, a significant portion of learning
might already be accomplished by convolution parameters.
While most of the learning in larger backbones is achieved
by the convolution layers, there is still a reduction in perfor-
mance observed when substituting the linearization of the
output spatial map with GAP. However, much of this lost
accuracy can be regained by using GWP for larger back-
bones as well. For larger backbone, 58% of the lost accu-
racy can be regained for standard benchmarks in the case
of AdaFace, along with 66% for IJBB and 64% for IJBC.
Similarly, for ArcFace, the accuracy is regained by 95% for
standard benchmarks, 68% for IJBB, and 100% for IJBC.
Overall, employing GAP instead of linearization leads to a
decline in model accuracy, affecting both smaller and larger
backbones. Nonetheless, utilizing GWP enables much of
the lost accuracy to be recovered without incurring addi-
tional parameter costs.

Loss Network Training NP (M) PL (M) (% total) B. Avg IJB-B IJB-C

Baseline 34.2 12.8 (37.4%) 97.04 94.56 96.29

ResNet34 w/ GAP 21.6 0.26 (1.2%) 96.89 93.53 95.62

ArcFace w/ GWP 21.6 0.26 (1.2%) 97.14 93.75 95.83

Baseline 65.2 12.8 (19.6%) 97.51 95.15 96.73

ResNet100 w/ GAP 52.6 0.26 (0.5%) 97.30 94.92 96.61

w/ GWP 52.6 0.26 (0.5%) 97.50 95.07 96.78

Baseline 34.2 12.8 97.03 94.92 96.49

ResNet34 w/ GAP 21.6 0.26 96.96 94.21 95.93

AdaFace w/ GWP 21.6 0.26 97.04 94.58 96.21

Baseline 65.2 12.8 97.47 95.74 97.15

ResNet100 w/ GAP 52.6 0.26 97.35 94.88 96.45

w/ GWP 52.6 0.26 97.42 95.45 96.90

Table 5. Substituting the linearization of the output spatial map
with GAP reduces the model accuracy for both smaller and larger
backbones. However, using GWP, the lost accuracy can be re-
gained without requiring additional parameters for both smaller
and larger backbones, as well as for both static and adaptive mar-
gin learning paradigms. For standard benchmarks, 1:1 verifica-
tion accuracy (%) and TAR@FAR=1e−4 are reported respectively.
Keys: [ NP - Number of Parameters, PL (% total) - Linear Para-
maters (% of total parameters) ]

8. Conclusions.
Our study reveals that linearizing the output spatial map
causes significant parameter inflation in the linear layer

of ResNet-based deep networks used for face recognition.
To tackle this challenge, we propose a novel Gaussian
Weighted Pooling (GWP) layer, which circumvents the
necessity for linearization and thereby alleviates parameter
inflation. Our ablation studies demonstrate that using naı̈ve
average pooling (GAP) reduces the accuracy of the models.
However, integrating GWP maintains accuracy across
standard benchmarks such as LFW, CFP-FP, AGEDB-30,
CALFW, and CPLFW compared to parameter-inflated
baseline models, both for static and adaptive margin-based
models. Furthermore, even for the more challenging IJB
family, there is only a marginal drop in performance,
despite a significant reduction of network parameters. Our
results underscore that linearizing the output spatial map to
attain high-quality vector representation of a facial image
is a parameter-unfriendly operation. Other alternatives
like the one proposed in this work should be explored to
manage parameter count effectively. Additionally, our
findings suggest that using GWP with larger 7 × 7 kernels
in the first layer yields notably superior results. One reason
for this could be that, with the removal of numerous linear
layers - which are known for their tendency to memorize
information [3, 37] - the convolution kernel is compelled
to learn more effective features. In this context, the larger
kernel in the first layer, which interacts directly with raw
RGB data, might be capturing superior features due to its
larger receptive field.

Future Work. In this study, we have demonstrated the
effectiveness of leveraging face recognition-specific image
alignment to compute static attention kernels, thereby as-
signing importance to pixels based on their spatial position
in the feature map. In the future, exploring methods such as
more advanced and numerically stable kernels, or adaptive
normalized kernels, can be investigated to further use the
prior information of face alignment to reduce the accuracy
gap while keeping the parameter count in check.
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